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Abstract 
A recent study showed 68% of FPGA projects are behind schedule and 

83% have a significant bug escape into production. This paper will 
provide tips and tricks to improve reliability on of your FPGA designs.  



1 | P a g e  
 © Blue Pearl Software  

The “I can just fix it” FPGA design attitude is a major reason a recent study showed that 68% 

of FPGA projects are behind schedule and 83% of have a significant bug that escapes into 

production. On top of that, code developed this way has a habit of sticking around to become 

what’s known as “legacy code,” the code that no one wants to touch because it’s so poorly 

written that no one on the team has any chance of understanding what it’s really doing. 

When designing FPGAs, code quality is essential to staying on schedule, avoiding design 

iterations and, worse, bugs found in production. This is especially true when it comes to high 

reliability applications such as automotive, space and medical devices where bugs can be 

extremely expensive or impossible to fix. But just what makes RTL (VHDL or SystemVerilog) 

quality code?  The answer is, well, there isn’t just one thing that makes for quality code. It’s 

a combination of considerations from readability to architecture choices.  

In this white paper, we will investigate and do a deep dive into specific aspects of “quality 

code.” This includes readable and maintainable RTL code, Finite State Machine (FSM) 

architectures and coding guidelines and finally the challenges around multiple Clock 

Domains.  

Readable and maintainable code 

Readable and maintainable code takes some common discipline, starting with the basics 

such as naming conventions. It's not so much whether the organization prefers big endian or 

little endian, spaces or tabs, prefixes or suffixes, underscores or hyphens or camel case, the 

important thing is to have a standard and stick to it. By standardizing on naming conventions 

for architectures, packages, signals, clocks, resets, etc., code becomes clearer and as a 

side benefit, it can reduce the code complexity. Going through code by hand to uphold these 

standards is incredibly tedious, but the task can be easily automated with a static analysis 

tool.  

A simple and common rookie mistake is to hard coded numbers, especially in shared 

packages. While the original coder may understand exactly the specific hard coded number, 

10 years down the line, when it’s time to update the device or functionality, the use of a hard 

coded number will add to confusion and delays.  

Simulation vs synthesis mismatches  

While correct simulation of code is important, it doesn’t necessarily mean that the code is 

free from issues. For example, variables that are used before they’re assigned might be 

unknown or might retain a previous value, which means possible mismatches between the 

simulation and actual functionality after synthesis.  This simple mistake can mean the design 

works in simulation but then later fails in the lab or, worse, in the field.  

Another common example of code quality issues is missing assignments in IF and Else blocks 

and case statements that will cause most synthesis tools to create latches in the design along 
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with the registers. Implied latches can cause issues with timing, and different synthesis tools 

will do this in different ways, so change vendors, change implementations.  

 

Figure 1 Latch vs Flip Flop 

The goal of any tool is to succeed, and a synthesis tool wants to synthesize successfully, so 

it may give your code the benefit of the doubt and assume the code is right until it’s proven 

wrong. Many tools will even accept common poor practices and “fix” them. Again, different 

tools, different “fixes.”  

Reset issues 

Another potential code quality issue is synchronous de-assertion of asynchronous resets. 

Some pay little attention to how their reset will work in the real world. They just throw in a 

global reset just so the simulation looks "tidy" at Time Zero, but this isn't enough. That reset 

must work in the real world. Keep in mind, a global reset is just that, global, so it can have a 

large fanout that causes significant delay and skew, so it should be buffered properly. And 

because this reset is asynchronous, it can happen at any time, and it forces the flip-flops to 

a known state immediately.  

This is not a problem; however, the de-assertion issue comes not when the reset pulse 

begins, but when it ends relative to the active clock edge. The minimum time between the 

inactive edge of your reset and the active edge of your clock is called recovery time. Violating 

recovery time is no different than violating setup or hold time. The easiest way to avoid this 

issue is to design the reset as shown below. The active edge can happen at any time, but 

the inactive edge is synchronous with the clock. 
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Figure 2  Asynchronous Reset Circuit 

Finding and addressing code quality issues, such as naming conventions, reset issues, 

excessive area, low frequency, and meantime between failures up front, as you code can 

significantly reduce the number of iterations through synthesis and place and route, 

improving productivity, reducing development costs, and improving the reliability of a design.  

The Visual Verification Suite provides RTL Analysis to identify coding style and structural 

issues up front. The RTL Analysis points out naming conventions as well as structural issues 

such as long paths and if-then-else analysis as you code, rather than late in the design cycle.  

 

 

Figure 3 Visual Verification Suite 

 

So, what is it that makes the suite such a powerful debugging environment? It has a 

straightforward, understandable graphical user interface that runs on Windows or Linux, and 

quickly generates reports that show aspects of your design, like the highest fanout nets, or 

the longest if-then-else chains, and an easy-to-filter report window showing the specific 
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issues it has found. The suite also includes numerous checks to catch violations of easily 

created company specific naming conventions.  

 

FSM Architectures and Coding Guidelines 

There are different methods or protections that can be used on state machine designs. If a 

single-event upset (SEU, a radiation- induced change in the bit in one flip-flop) occurs in a 

state register, the FSM that contains the register could go into an erroneous state or could 

"hang," by which is meant that the machine could remain in undefined states indefinitely or 

requiring a reset of the FSM as the only way to recover.  

 

Obviously, in many applications, this is not acceptable or is completely impractical. Typically, 

the designer wants the state machine to be able to either continue operating (tolerance) or 

detect a failure and fail safe (detection).  

 

To ensure reliability of the state machine, the coding scheme for bits in the state register 

must satisfy the following criteria: 

 

1. All possible states must be defined 

2. A SEU brings the state machine to a known state 

3. There is no possibility of a hang state 

4. No false state is entered 

5. A SEU exerts no effect on the state machine 

 

Tolerance  

 

When it comes to tolerance there are two mechanisms we can use:  

 

• Triple Modular Redundancy (TMR) — With TMR three instantiations of the state machine 

are created, and the output and current state are voted upon clock cycle by clock cycle. 

TMR is a good approach, but it does require three implementations and ensuring physical 

separation of the three implementations to ensure only one FSM is corrupted. For more 

on TMR we recommend that you view Xilinx Isolation Design Flow. This documented flow 

can be especially useful for ensuring physical separation in the chip. 

 

• Hamming Three Encoded — With a Hamming three encoded state machine, each state 

is encoded with a hamming distance of three between them. This prevents a SEU from 

changing between valid states, as the SEU can only flip a single bit. In a Hamming three, 

each state has several adjacent states which also cover the possible states to which a 

SEU could change the Hamming three state. This adjacent state behaves the same as 

the original state, hence allowing the state machine to tolerate the SEU and keep 

operating. It does, however, mean the number of states declared is large. For a 16 state 

FSM encoded sequentially, seven bits are needed to encode the 16 states separated by 

https://www.xilinx.com/applications/isolation-design-flow.html
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a Hamming distance of three. This means there are N * (M+1) states required, where N 

is the number of states and M is the register size.  

 

 

Both the TMR and Hamming three structures require considerable effort from the design 

engineer unless the structure can be implemented automatically by the synthesis tool.  

 

Detection 

 

When it comes to detection, the structures used are considerably simpler:  

 

• Hamming Two (sequential + parity) — This method encodes the state with a Hamming 

distance of two. Should a SEU occur, the error can be found using a simple XOR network 

and the state machine can be recovered to a safe state to recommence operation.  

 

• Default Case / When Others —This method uses the Verilog default or VHDL when others 

to implement a recover state. This does require that the synthesis tool does not ignore 

the default case or when others, and that the user does not define them as null or do not 

care.  

 

Hamming Two is the best compromise in terms of size, speed, and fault-tolerance and is 

preferred over both binary and one-hot state machine encoding for high reliability designs. 

Hamming Three encoding is the best fault-tolerant to single faults and, therefore, preferred 

when ultimate reliability is required in a critical application, however it is slower and larger 

than other implementations.  

Static Verification of FSMs 

For highly reliable FSMs, all possible states must be defined and there must be no possibility 

of a hang state. Functional verification of an FPGA’s RTL requires a considerable simulation 

effort to achieve code coverage (branch, path, toggle, condition, expression etc.). 

To achieve a high level of coverage the simulation must test several boundary and corner 

cases to observe the behavior of the unit under test and ensure its correctness. This can 

lead to long simulation runs and significant delays between iterations when issues are 

detected. Of course, issues found in simulation can range from functional performance such 

as insufficient throughput to state machine deadlocks due to incorrect implementation during 

the coding process.  

This is where static analysis tools such as the Visual Verification Suite can be wonderfully 

complementary to functional simulation and can help save considerable time and effort in the 

verification stage, when code coverage is being investigated.  

Static analysis enables functional verification to be started with a much higher quality of code, 

reducing iterations late in the verification cycle. In addition, static analysis typically also runs 
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in tens of seconds to minutes compared to long running simulations. The Visual Verification 

Suite provides an FSM viewer and reports that help pinpoint any issues, up front, as you 

code.    

 

 

Figure 4 Visual Verification Suite FSM Viewer 

Many of the suite’s predefined rules focus upon the structural elements which may be 

incorrect in the design such as:  

• Unnecessary events – These are unnecessary signals included in the sensitivity list. Such 

inclusion will lead to simulation mismatch and add complexity to achieving code 

coverage. 

• If-Then-Else Depth – This will analyze the If-Then-Else structures to identify deep paths 

which may impact timing performance and throughput when implemented.  

• Terminal State – This is a state in a state machine which once entered has no exit 

condition. Finding this prior to simulation can save wasted simulation time.  
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• Unreachable State – This is a state in a state machine which has no entrance condition. 

Finding this prior to simulation can again save considerable simulation time.  

• Reset – This ensures each flip flop is reset and reset removal is synchronous to the clock 

domain of the reset. Several in-orbit issues have been detected relying upon the power-

on status of registers and as such reset for all flip flops is best practice. 

• Clocking – Clocking structures are also analyzed to ensure there is no clock gating or 

generation of internal clocks.  

• Safe Counters – Checking of counters to ensure that terminal counts use greater than or 

equal to for up counters and less than or equal to for down counters will ensure that single 

event effects have a reduced impact on locking up counters.  

• Dead or unused code – Analyzes and warns about unused or dead code in the design. 

This can be removed prior to functional simulation and reduces head scratching when 

code coverage cannot be achieved.  

 

Multiple Clock Domains 

Modern designs often contain several clock domains. Of course, information needs to be 

shared between these domains. Incorrect synchronization of data and signals between clock 

domains can result in metastability and corrupted data. In some systems this incorrect data 

can be catastrophic. The understanding of Clock Domain Crossing (CDC) origins boils down 

to a few simple truths. There is clock drift from separate sources.   

At its most basic level, metastability is what happens within a register when data changes 

too soon before or after the active clock edge; that is, when setup or hold times are violated. 

A register in a metastable state is in between valid logic states, and the process of settling to 

a valid logic state takes longer than normal. It will eventually fall into a stable "1" or "0" state, 

but there is no way to predict which way it will fall or how long it will take.  

Think of it as tossing a coin millions of times. There are actually three possibilities: heads, 

tails, or once in a great while the coin just might stick the landing and end up on its edge, if 

only for a while. The question is, will that while be longer than a clock cycle? That’s 

metastability. 

When data is transferred between two registers whose clocks are asynchronous, 

metastability will happen. There is no way to prevent it. All you can do is to minimize its impact 

by placing the two clocks in different clock domains and using a clock synchronization 

technique at the crossing point. Hence the name "clock domain crossing." 
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Figure 5 Data Metastability 

 

Putting two clocks into the same clock domain is a declaration that these two clocks are 

synchronous to each other, and crossings between them do not need to be synchronized. If 

the clocks are from the same source, or one is derived from the other, then they are 

synchronous and can be placed into the same clock domain. 

Clocks that are asynchronous to one another should always be placed in different clock 

domains, and any CDCs between them need to be synchronized. Even two clocks of the 

same frequency should be placed into different domains if they come from independent 

sources. Unfortunately, two independent clock sources of the same frequency will drift 

relative to one another over time and cause metastability problems. 

Synchronizers  

The simplest synchronization method for a single bit is to have two consecutive registers in 

the receiving domain. This is known as double-register synchronization. By requiring any 

metastable state that occurs to pass through two registers, it reduces the chance of 

metastability from 1/r to 1/r2, which is acceptable for most purposes. Data integrity is 

maintained only by coincidence. Since it’s only one bit, the only two possibilities are that it 

will happen to match either the preceding clock cycle or the subsequent clock cycle. 

One of the most popular methods of passing data between clock domains is to use a FIFO. 

A dual port memory is used for the FIFO storage. One port is controlled by the sender, which 

puts data into the memory as fast as one data word (or one data bit for serial applications) 

per write clock. The other port is controlled by the receiver, which pulls data out of memory; 

one data word per read clock.  

Two control signals are used to indicate if the FIFO is empty, full, or partially full. Two 

additional control signals are frequently used to indicate if the FIFO is almost full or almost 

empty. In theory, placing data into a shared memory with one clock and removing the data 
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from the shared memory with another clock seems like an easy and ideal solution to passing 

data between clock domains. For the most part it is, however generating accurate full and 

empty flags can be challenging. 

 

Figure 6 FIFO Bus Synchronization 

Another CDC issue that must be addresses is that of data reconvergence, when two data 

signals are combined after being independently synchronized between the same two clock 

domains. This is a problem because synchronization is inherently an arbitration to avoid 

metastability. A new value will be correctly clocked, without metastability, on one of two 

successive receiving clock cycles. There’s no way of knowing which. The two signals in 

question can be arbitrated differently and can end up being clocked into the receiving domain 

on different clock cycles when correct operation depends upon their remaining in step. Think 

again of the coin toss. With a single bit, it’s all but certain that the coin will end up either 

heads or tails, but with multiple bits, you’d need either all heads or all tails. That’s a losing 

bet. 

 

Figure 7 Signal Reconvergence 

The implication is that, for a data bus that crosses clock domains, having individual 

synchronization on each of the bits will not work reliably. One solution is to generate a single 
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bit “data valid” flag which indicates that the data is stable. Synchronize that flag across 

domains, and then use it to enable the clocking of the data bus into the new domain. 

Another solution is to ensure that the data itself is “gray” (only one bit changing on any given 

clock cycle) with respect to the receiving clock. This is easier when crossing from a slower 

to a faster domain because you can be sure there will not be multiple changes from the 

perspective of the receiving domain. The handshake synchronizers use two m-flip-flop 

synchronizers to generate request and acknowledge signals.  

How to identify CDC Issues: 

The Visual Verifications Suite’s Advanced Clock Environment (ACE) provides a graphical 

representation summarizing data paths between clocks and can make recommendations for 

grouping of clocks into clock domains. With ACE, designers can identify clocks to better 

understand how they interact with synchronizers in the design. This allows users to quickly 

identify improper synchronizers or clock domain groupings that cause CDC metastability. 

 

Figure 8 Advanced Clock Environment 

ACE addresses a fundamental chicken-and-egg problem with automated CDC analysis. To 

perform a CDC analysis, you first must properly define your clock domains, but in order to 

automatically define clock domains, you need to perform a CDC analysis. ACE does this by 

performing a quick-and-dirty CDC analysis that recognizes only double-register 

synchronization, and then by explicitly assuming that two clocks are in the same domain if a 
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high percentage (80% by default) of CDCs are unsynchronized. Then the clock domains, 

whether defined automatically or by the user, are analyzed and graphically displayed. 

The overall goal of ACE is to enable engineers to find metastability issues in designs by 

properly grouping clocks into clock domains. Design and Verification engineers use ACE to 

ensure the clock domains are properly specified before running a CDC analysis. ACE will 

quickly find errors in clock domain groupings or find/recommend appropriate clock domain 

groupings for a circuit that is synchronized. Only then can a correct and comprehensive CDC 

analysis be performed. 

Next, the suite’s CDC Analysis understands FPGA vendor clocking schemes, saving 

enormous resources to set up designs. The CDC analysis has built-in intelligence that helps 

set up the CDC run and rapidly debug issue found using the built-in cross-probing and 

schematic display. 

 

Figure 2 Visual Verification Suite CDC Analysis 

One of the strengths of the suite’s CDC analysis is that it flags all CDCs, whether 

unsynchronized, properly synchronized, or improperly synchronized. For example, using a 

double-register scheme on a single bit is perfectly appropriate, but a multi-bit bus requires a 

more robust synchronization technique. The user even has the option to find what we call 

“Clock Equivalent” crossings, which are clock-to-clock interactions within the same clock 

domain. 

Visual Verification Suite, used early and often in the design process as opposed to as an end 

of design/sign-off only tool, significantly contributes to design security, efficiency, and quality, 

while minimizing chances of field vulnerabilities and failures. 
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About Blue Pearl Software 

Blue Pearl Software, Inc. is a leading provider of DO-254 compatible design automation 

software for ASIC, FPGA, and IP RTL verification. Our customers are RTL managers and 

developers, in military, aerospace, semiconductor, medical, communications and safety 

critical design companies. The Visual Verification™ Suite speeds block and project level 

verification with advanced integrated RTL structural and formal linting, constraint generation 

and clock domain crossing analysis. Our usability is unmatched in the industry and can help 

your design team accelerate development and produce high reliability designs. The Visual 

Verification Suite is designed, tested and supported in the United States of America. To learn 

more, request a demonstration today.  
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